# Calculus Revisited: Single Variable Calculus

Massachusetts Institute of Technology

Calculus Revisited is a series of videos and related resources that covers the materials normally found in a freshman-level introductory calculus course. The series was first released in 1970 as a way for people to review the essentials of calculus. It is equally valuable for students who are learning calculus for the first time.

• ##### Sets, Functions & Limits- Preface
Herbert Gross

We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.

• ##### Analytic Geometry
Herbert Gross

We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.

• ##### Inverse Functions
Herbert Gross

We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.

• ##### Sets, Functions & Limits- Derivatives and Limits
Herbert Gross

We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.

• ##### A More Rigorous Approach to Limits
Herbert Gross

We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.

• ##### Sets, Functions & Limits- Mathematical Inductions
Herbert Gross

We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.

• ##### Derivatives of Some Simple Functions
Herbert Gross

We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.

• ##### Approximations and Infinitesimals
Herbert Gross

We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.

• ##### Composite Functions and the Chain Rule
Herbert Gross

We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.

• ##### Differentiation of Inverse Functions
Herbert Gross

We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.

• ##### Implicit Differentiation
Herbert Gross

We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.

• ##### Differentiation- Continuity
Herbert Gross

We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.

• ##### Differentiation- Curve Plotting
Herbert Gross

We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.

• ##### Differentiation- Maxima and Minima
Herbert Gross

We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.

• ##### Differentiation- Rolle's Theorem and its Consequences
Herbert Gross

We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.

• ##### Differentiation- Inverse Differentiation
Herbert Gross

We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.

• ##### Differentiation- The "Definite" Indefinite Integral
Herbert Gross

We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.

• ##### The Circular Functions
Herbert Gross

We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.

• ##### Inverse Circular Functions
Herbert Gross

We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.

• ##### The Definite Integral
Herbert Gross

We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.

• ##### Marriage of Differential and Integral Calculus
Herbert Gross

We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.

• ##### Three-Dimensional Area
Herbert Gross

We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.

• ##### One-Dimensional Area
Herbert Gross

We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.

• ##### Logarithms without Exponents
Herbert Gross

We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.

• ##### Inverse Logarithms
Herbert Gross

We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.

• ##### What a Difference a Sign Makes
Herbert Gross

We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.

• ##### Inverse Hyperbolic Functions
Herbert Gross

We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.

• ##### More Integration Techniques- Some Basic Recipes
Herbert Gross

We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.

• ##### More Integration Techniques- Partial Functions
Herbert Gross

We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.

• ##### More Integration Techniques- Integration by Parts
Herbert Gross

We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.

• ##### More Integration Techniques- Improper Integrals
Herbert Gross

We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.

• ##### Infinite Series- Positive Series
Herbert Gross

We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.

• ##### Infinite Series- Absolute Convergence
Herbert Gross

We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.

• ##### Infinite Series- Polynomial Approximations
Herbert Gross

We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.

• ##### Infinite Series- Uniform Convergence
Herbert Gross

We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.

• ##### Infinite Series- Uniform Convergence of Power Series
Herbert Gross

We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.