This course uses the theory and application of atomistic computer simulations to model, understand, and predict the properties of real materials. Specific topics include: energy models from classical potentials to first-principles approaches; density functional theory and the total-energy pseudopotential method; errors and accuracy of quantitative predictions: thermodynamic ensembles, Monte Carlo sampling and molecular dynamics simulations; free energy and phase transitions; fluctuations and transport properties; and coarse-graining approaches and mesoscale models. The course employs case studies from industrial applications of advanced materials to nanotechnology. Several laboratories will give students direct experience with simulations of classical force fields, electronic-structure approaches, molecular dynamics, and Monte Carlo.
We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.
We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.
We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.
We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.
We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.
We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.
We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.
We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.
We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.
We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.
We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.
We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.
We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.
We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.
We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.
We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.
We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.
We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.
We revisit the shortest paths problem, considering the case where the input is a directed minor-free graph with negative arc lengths (but no negative-length cycles).In Lecture 14, we saw almost-linear-time algorithms for the case of planar and bounded-genus graphs. Currently, comparable bounds for minor-free graphs are not known. We shall discuss Goldberg's algorithm, a shortest-path algorithm for general graphs with integer lengths, whose running time depends logarithmically on the magnitude of the largest negative arc length. By exploiting separators (Lecture 6), it runs faster on minor-free graphs than on general graphs, but it still requires superlinear time.